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ABSTRACT: The behavior of polymer chains under stretching
is a classical problem in polymer science. However, a
fundamental question still in mist is how the stretching affects
the interactions between polymer chains, especially when the
tensions on the chains are unequal. In this work, we combine
statistical theory and molecular simulations to study the
influence of this tension disparity on the miscibility of athermal
polymer systems. Through a minimal model, we demonstrate
that when polymer chains of different lengths are under the
same stretching disparate tension states among polymer chains
can lead to either macroscopic or microscopic phase separation,
depending on whether their ending points are mobile or not.
Generally, the immiscibility found here is an entropic effect
arising from conformational asymmetry between unequally
stretched polymer chains. Our findings provide a new mechanism to explain the flow-induced demixing in polymer blends and
indicate that heterogeneous structure can occur during stretching, simply as a result of nonmonodispersity in elastic polymer
materials.

The phenomenon of polymer under stretching or tension
not only is a persistent topic for elastic polymer materials,

like rubber and plastics membrane, but also widely exists in
polymer fluid,1−3 polymer brush,4−6 and polymer-mediated
surface adhesion7−9 etc. It was found that stretching can induce
crystallization10,11 or local orientational order12,13 in rubber,
which makes it an important fabricating process to increase the
mechanical performance of polymer materials in modern
industry.14 Classical polymer theories10,15 considering the
decrease of entropy and orientational coupling during the
stretching provided simple explanations for these stretching-
induced phenomena. However, these venerable theories were
based on the assumption that polymer chains are equally
stretched. In reality, the tensions felt by individual polymer
chains are far from uniform as a result of dispersion of polymer
lengths and randomness of polymer network.11,16,17 It is still
unclear how this tension disparity modifies the thermodynamic
property and microscopic structure of polymer materials.
Actually, the heterogeneous tension state is also a common

feature in polymer rheology since free chains in polymer fluids
are usually stretched by shear or extensional flows, which can be
both spatially and temporally varied. Experimentally, complex
flow-induced mixing and demixing phase behaviors1,2 and even
crystallization3 were observed. Current explanations for these
phenomena mainly relied on phenomenologically modified
Flory−Huggins theories18,19 or nonequilibrium methods.20,21

Whether heterogeneous tension distribution in polymer fluid
may contribute to the immiscibility has received little attention.
Therefore, a full comprehension of how the disparate tension

states modify the miscibility of polymer systems is not only a
fundamental question for polymer physics but also of great
significance for the polymer industry. To answer this question,
in this work, we build a minimal model wherein the tensions
imposed on different polymer chains can be well tuned and
studied. With the help from both theory and simulations, we
show that disparate tension states are able to cause strong
immiscibility and phase separation. The phase separation can
be either microscopic or macroscopic, depending on whether
the ends of polymer chains are mobile or not.
To model disparate tension states on different polymer

chains, we tether two polymeric species, merely differing in
length, on two opposite surfaces in an implicit solvent
background, as illustrated in Figure 1. The tethering sites are
mobile or fixed depending on the problem we study. Since we
are only concerned about the entropic effect, the system is
assumed to be athermal, and monomers simply interact with
each other through excluded volume repulsion. Therefore, both
the conformation and tension state of a polymer chain are
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mainly determined by two factors, i.e., the stretching distance,
H, and the polymer length. Under the same H, short chains are
expected to undertake higher tensions compared with long
chains. By varying the length ratio between two polymer
species as well as H, this model allows us to sensitively tune the
tension disparity in the system.
We first assume that the tethering sites of polymer chains on

the surfaces are mobile. To obtain the free energy of the
system, we extend the statistical theory first raised by Di
Marzio.15 Under mean field approximation, the free energy of
our ternary system can be written as
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where Sc,1 and Sc,2 represent the configurational entropies of
short and long polymer chains, respectively. The rest of the
parts are the “packing entropy” according to the original Di
Marzio theory. ϕs, ϕ1, and ϕ2 are the volume fractions of
solvent background and two polymeric species. Ni is the
monomer number of i species (i = 1,2), and v0 is the volume of

a monomer. Importantly, γ α= −
i j i j

N
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1i

i
reflects the anisotropic

deformation of polymer chains of i species, with deformation
parameter αi,j defined as the fraction of monomers whose bond
vectors point to the ±j direction (j = x, y, z). The stretching is
assumed in the +z direction and normal to the surface, which
leads to αi,x = αi,y by virtue of the symmetry of the system. On

the basis of the three-chain model,22 the deformation parameter
αi,j as a function of stretching distance H can be obtained as
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where Li = Nib is the contour length of polymeric species i. As
one can observe, if the stretching distance H is small, i.e., H ≪
Li, an isotropic distribution of segments’ orientations is
obtained, namely, α α α= = =i x i y i z, , ,

1
3
. On the contrary,

under a highly stretched situation H ≃ Li, one would get αi,x
= αi,y = 0 and αi,z = 1, indicating that chains are fully orientated
toward the z direction. Details of the whole theory can be
found in part 1 of the Supporting Information (SI).
Despite the mathematical simplicity, the theory presented

here predicts that immiscibility can occur in the system due to
disparate tension states among polymer chains. For the sake of
clarification, we consider the simple binary polymer system

(ϕ1+ϕ2 = 1) and assume ≃− 1N
N

1i

i
. Moreover, since the

tension on more deformed chains f1 is always larger than f 2 on
less deformed chains (see part 2 of SI for the proof), intuitively,
the deformation parameter αi,j is rewritten as a function of the
tension on polymer chain i, namely, αi,j = αj( f i). Through the
second derivative of the free energy, one can find a shift to the
location of the spinodal, which is generally viewed as the
change of the effective Flory−Huggins χ12 parameter
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In the long chain limit L2 > L1 ≫ H ≫ b, Δχ12 can be
simplified to
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As can be observed, Δχ12 is always positive as long as the
tensions on two polymer species are unequal, i.e., f1 ≠ f 2. This
indicates that tension disparity decreases the miscibility of the
system. If the disparity is large enough, strong immiscibility can
induce a first-order phase separation.

Figure 1. Schematic of the polymer-stretching system. (a) Short
polymer molecules are represented by green chains with N1
monomers. (b) Long polymer molecules are shown as red chains
with N2 monomers. (c) All polymer chains are attached to two
opposite interfaces by their ending points.

Figure 2. Theoretical phase diagrams for systems of different N2 under varied stretching distances H with fixed N1 = 50. The volume fraction of each
component is the distance to its opposite side of the triangle. Every dotted line connects the two coexisting states. The dashed lines show the choices
of initiative simulation states under different packing fractions.
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In order to explore this effect more deeply, we also design
Brownian dynamics simulations of the system. Polymers are
modeled as linear chains composed of coarse-grained beads.
Neighboring beads are connected by harmonic bond potential
Fbonded,i,i+1 = kbonded,i,i+1(ri,j − ri,j,0)

2, with kbonded/kT = 128 and
ri,j,0/σ = 1. A shifted Lennard-Jones potential, cut off at 21/6σ, is
used to model the repulsion between unconnected beads, i.e.
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where ϵ is chosen as ϵ/kT = 1 and σ = 1. All beads are
constrained inside the region 1 ≤ Z ≤ H + 1 except for the
ending beads of chains, which are restricted in Z = 1 and Z = H
+ 1 planes separatively. The dimensions of our simulation box
are chosen as 50 × 50 × (H + 2) with periodic boundary
conditions in three directions. The packing fraction ϕpack = ρσ3

of polymer chains inside the box varies from 0 to 0.85,23 where
ρ is the total monomer density. All simulations are performed
in the NVT ensemble by using the LAMMPS package (1 Feb
2014).24 The time step is 0.01τ, and the data are collected every
100τ, with the total simulation time lager than 100 000τ.
We first plot phase diagrams of general ternary systems in

Figure 2 for chain lengths N1 = 50 and N2 = 200, 100, and 75,
under various stretching distances H. For these three length
ratios (κ = N2/N1), we find that as long as H reaches a critical
value, a first-order phase transition occurs at high packing
fraction (ϕpack = ϕ1 + ϕ2), resulting in two coexisting phases
with one rich in short chains and the other rich in long ones.
Further increase of H enhances this immiscibility, making the
coexisting curves shift to low packing fraction areas (the upper
angle). On the other hand, when the length ratio κ is decreased
from 4.0 (N2 = 200) to 1.5 (N2 = 75) under a fixed H, the
phase separation is found to be significantly suppressed,
resulting in a smaller phase transition area or even disappearing
of it. The explanation for these results is that, although κ itself
can not change the miscibility of system,25 decreasing κ
diminishes the tension disparity between two polymer species,
which in turn weakens the immiscibility according to our
former analysis. It should be mentioned that, generally, the
external force is not the only factor leading to the stretching of
polymer chains. Contribution from lateral intermolecular
repulsion is also significant, especially in high tethering density
circumstances. This issue is discussed in detail in part 1 of the
SI.

In order to obtain more evidence from molecular level and
further explore the dynamic aspect, we perform molecular
simulations under different stretching H and packing fractions
as well. The initiative proportions of two polymeric species are
indicated by the dashed lines in Figure 2. To quantify the
degree of demixing at the equilibrium state, we adopt a two-
dimension mixing parameter Γ26 by using the coordinates of
chains’ center points. This order parameter is based on the
statistic of nearest neighbor numbers, which makes it highly
suitable to characterize the mixing degree of the size-limited
simulation system. The normalized Γ ranges from 0 to −1,
representing the fully random-mixing state to the completely
phase-separated state. For our systems, we find that when time-
averaged Γ is below −0.3 segregation of the two polymeric
species can be observed unambiguously. Therefore, Γ* = −0.3
can be tentatively regarded as an indicator of phase separation.
In Figure 3a, we give Γ as a function of normalized ϕ̃pack and H
for N1 = 50 and N2 = 100 with the area of Γ < −0.3 enclosed by
a dotted line. Top views of simulation systems for marked A, B,
C, and D points in the phase diagram are given in Figure 3b
(for lateral views, see Figure S1 in Supporting Information).
For comparison, we also plot the theoretical critical packing
fraction as a function of stretching, which is represented by a
solid line in Figure 3a. It can be observed that our theoretical
calculations agree well with simulation results. The same
agreement is found for N1 = 50 and N2 = 75 systems (see
Figure S2a), whereas for the large length ratio case (N1 = 50, N2
= 200) a discrepancy between simulations and theoretical
calculations occurs in the area of high packing fraction and low
stretching (see Figure S2b). This discrepancy seems to have a
dynamic origin since the kinetics of phase transition is found to
be much slower for highly packed systems when the stretching
H approaches the critical value (Figure S3). Similar slow
dynamics is found in other high-density systems near the
critical point.27 Nevertheless, the unperturbed chain assump-
tion made in Di Marzio theory may also have a delicate
influence on the phase behavior in high-density polymer
systems, as discussed in part 1 of the SI.
With the help from molecular simulation, we also study a

similar case wherein molecule number instead of packing
fraction is fixed. In this situation, strong phase separation
happens likewise (see movie S1 in Supporting Information).
Furthermore, simulations enable us to explore the immiscibility
in the system with continual tension distribution, where chains
of different lengths (Ni = 50, 51, ..., 99, 100) are equally chosen.
The snapshot is shown in Figure 3c. It can be observed that

Figure 3. (a) Mixing parameter Γ (shown as color scales) as a function of ϕ̃pack and H for N1 = 50 and N2 = 100. The dotted line represents Γ =
−0.3, while the solid line shows theoretical calculations. Note that the real simulated packing fraction ϕpack = ρσ3, which ranges from 0 to 0.85,23 is
normalized by ϕ̃pack = ϕpack/0.85. (b) Top views of simulation systems for A, B, C, and D points in (a). (c) Top view of polymer melts system (ϕ̃pack
= 1) of continual chain-length distribution under H = 49. Chains of different lengths are shown by different colors.
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short chains with high tension (blue) form compact
aggregations, surrounded by chains of moderate tension
(green) in the background of long and low-tension chains
(red). Therefore, the stretching-induced immiscibility found in
our bimodal tension distribution model is general and robust,
which is the foundation to study real heterogeneous−tension
state polymer systems.
The above theoretical and simulation studies are all based on

the assumption that tethering sites of chains are mobile
(annealed), which helps to quantify the stretching-induced
immiscibility. Besides, this annealed system can be regarded as
a minimal model for nonuniform stretching in polymer fluid.
Copolymer systems with lamellar phase, where polymer chains
are found to be strongly stretched,28 may also provide the
opportunity to directly test our predictions, if experiments are
properly designed.
To further mimic the heterogeneous tension state in elastic

polymer materials like rubber, we next study the case wherein
the tethering points are immobile (quenched). The relaxation
time of the quenched system is found to be faster than the
annealed case since chains can only have local movements. This
allows us to choose a relatively large simulation system with N1
= 100 and N2 = 200. In Figure 4, we give snapshots of binary

polymer mixture systems at different stretching distances. The
ratio of molecule numbers between short and long polymer
chains is 3:1, which is the same as previous N1 = 50 and N2 =
100 systems, but the tethering sites of two polymeric species
are permanently fixed in a square lattice (see Figure S4).
Compared with annealed cases where macroscopic phase
separation prevails, the quenched case shows microscopic
phase separation when the stretching distance is increased
from H = 70 to H = 95. The microscopic phase separation is a
result of the competition between stretching-induced immisci-
bility and elastic constraints from quenched tethering points.
Interestingly, even in a fully stretching situation (H = 99), clear
microscopic phase morphology still exists. The reason is that
the driving force for phase separation under H = 99 is so strong
that short chains have to rearrange themselves at the cost of
elastic energy of intramolecular bonds. Although the distribu-
tion of polymer length is still bimodal, it is expected that these
phenomena also exist in polydisperse systems, similar to what
happens in the annealed case of Figure 3c. Therefore, from a
practical point, our results demonstrate that heterogeneous
structure can occur during stretching, simply as a result of
nonmonodispersity of polymer chains in elastic polymer
materials. The microdomains in it could be nuclei of

Figure 4. Top views of middle cross sections (up) and lateral views (down), for binary polymer mixtures with quenched tethering sites under
different stretching distances: (a), (e) H = 70; (b), (f) H = 80; (c), (g) H = 95; (d), (h) H = 99. The tethering points are permanently fixed on 3
(short chain):1 (long chain) square lattices.

Figure 5. (a) Rigidity−disparity picture for short polymer chains under strong stretching. The immiscibility comes from favorable orientational
coupling between more stretched chains. (b) Blob−disparity picture for long polymer chains under moderate stretching. The immiscibility between
chains of dissimilar tension states can be understood as frustrated packing of tension blobs of unequal sizes.
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stretching-induced crystallization, as indicated by previous
researches.11,17

So far, we have done a detailed investigation into the
stretching-induced immiscibility in relatively short-chain
systems with monomer number about 100. To observe phase
separation, the stretching H should compare with N1b for both
annealed and quenched tethering cases. Under such conditions,
stretched polymer chains of different tensions, in fact, can be
regarded as chains of different rigidities; i.e., short chains under
high tension behave like semirigid rods, while long chains with
low tension still remain flexible (see Figure 5a). Immiscibility
occurs as a result of local orientational coupling29,30 between
more stretched polymer chains, similar to what happens in
rod−coil systems.31,32

Although this rigidity−disparity picture looks quite reason-
able for short-chain systems, it may not be the case for long-
chain ones. To explore this issue, we return to the binary
polymer melts system. In the long-chain limit, L2>L1 ≫ H≫ b,
different tethering ways (annealed or quenched) only play
minor roles, and the critical stretching H* can be obtained

analytically based on eq 1 under the condition = =
ϕ ϕ

∂
∂

∂
∂

0F F2

2
1

3

3
1

.

The final expression is

κ
κ

κ* ≃ +
−

H N b
2( 1)
3( 1)2

3/4
1
3/4

(6)

eq 6 gives a scaling relationship H* ∼ N1
ν with ν = 3/4. If we

assume this scaling relationship is correct and turn to the blob
picture, then the critical size of tension blobs ξ1 is about N1

1/4b
for short chains and ξ2 = κξ1 for long chains. The immiscibility
in this long-chain system can not simply be attributed to the
aforementioned orientational coupling since at the scale smaller
than the size of the tension blob thermal fluctuations will make
chains behave like random-walk without any orientational
preferences.25 Therefore, the immiscibility must come from the
scale larger than the blob size. To understand this, one can
image inserting a large blob into the space left open by
removing some small blobs, or vice versa. The size difference
between two kinds of blobs will cause an energetic frustration
during the insertion.33 This frustration gives rise to the
immiscibility, similar to what happens in intrinsic conforma-
tional asymmetry systems.33−35 Although the scaling factor ν =
3/4 predicted by our mean-field theory requires further
scrutiny, this blob−disparity picture holds as far as ν < 1.
Therefore, for long-chain systems under moderate stretching,
the immiscibility is better to be interpreted as frustrated
packing of tension blobs of unequal sizes (see Figure 5b).
Both the rigidity and blob disparities caused by tension

inequality can be generally categorized as conformational
asymmetry, which is a more general polymer physics
issue33−37 and exists in many other systems as well. For
example, on cellular lipid membranes, lipid rafts are observed as
a consequence of liquid−gel phase transition, which is driven
by the conformational asymmetry between saturated and
unsaturated lipids.38 Intrinsic conformational asymmetry is
also believed to be the main causation for phase behavior in
mixtures of PE and PEE33,35 and other molecules that are
chemically similar but with different rigidities or topologies.36,37

In fact, there is a strong formula similarity between expression
of tension−disparity induced Δχ12 ∝ ( f1

2 − f 2
2)2 in eq 5 and the

theoretical result33−35,37 Δχϵ ∝ (β1
2 − β2

2)2 obtained from the
intrinsic conformational asymmetry systems, where βi is

proportional to the chain’s unperturbed gyration radius. This
similarity is not an accident. On the contrary, it reveals a deeper
physical connection between the conformational asymmetry
and tension disparity. In part 3 of the SI, we give a tentative
proof of this argument.
In conclusion, we present a minimal model to study how the

disparate tension states arising from the difference of polymer
lengths change the miscibility in the polymer-stretching system.
Strong immiscibility and phase separation are predicted by
statistical theory and confirmed by molecular simulations. The
phase separation can be either macroscopic or microscopic by
using different tethering methods. We demonstrate that this
kind of immiscibility is an entropic effect resulting from the
conformational asymmetry between unequally stretched
polymer chains. For short-chain systems, the conformational
asymmetry can be understood as that different tension states
endow the chains with dissimilar rigidities, while for long-chain
cases, frustrated packing of tension blobs of unequal sizes seems
to be the right physical picture. Our findings provide a new
point of view to understand the flow-induced demixing in
polymer blends and indicate that heterogeneous structure can
occur during stretching, simply as a result of nonmonodisper-
sity in elastic polymer materials. Finally, a novel strategy to
reversibly control the 3D microscopic morphology through
external force is also demonstrated by our work, which may be
useful for designing stretch-responded optical material,39

directing the self-assembly of nanoparticles40 and manipulating
the conductivity of rechargeable lithium batteries.41
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